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Introduction

In the univariate setting, consider the model
Xt:f;.‘+€t7 t:].,...,T,

where the unobserved function f; contains an unknown number of
features at unknown locations, and ¢; is centered noise.

Examples:

@ (canonical) change-point detection (f; being piecewise constant)
@ knot selection in spline smoothing

@ trend changes in time series analysis

More broadly, a feature can be anything we know how to estimate the
location of, if we know that there is only one present inside an interval.
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Goals

Objective: estimating the number and locations of these features

Goals:
@ to consistently estimate the number of the features

@ to consistently estimate the locations of the features, and ideally at
minimax optimal rates (up to an O(log T) factor worse)

@ to be computationally feasible

(i.e. complexity is at most a logarithmic factor worse than O(T))
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Our aim: a general framework
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(a) (M1) teeth (b) (M2) blocks
(c) (M3) wavel (d) (M4) wave2
(e) (MB) mix (f) (M7) quad
(g) (M6) vol: f; (h) (M6) vol: oy
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Single feature detection

Suppose that we know there exists a single feature inside the interval
[s, €], then detection could be typically accomplished via
(quasi-)log-likelihood-ratio-type statistics, i.e.

@ Find f, a function with only one feature (at different locations from
s+ 1to e— 1), minimising

e

ST X - R}

t=s

@ Denote the location of the feature of 7 by b.

Examples:
@ piecewise constant
@ knot of degree 1 (a.k.a. kink)
@ piecewise linear
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Single feature detection - piecewise constant

Denote by f? a step vector with a change-point at index b. We have that

e
. . Fb12
AIgMins <pee Min E {X: - ff} = argmaxb|<X,1/)§,e>!
t=s

where X = (X1,..., X,)" and d;é”e is an "Unbalanced Haar" vector, i.e. a
vector which

@ is constant and positive for i =s,..., b,

@ is constant and negative for i=b+1,...,e€,

@ sums to zero and sums to one when squared.

Thus, to locate the change-point, it is enough to only inspect the absolute
maxima of <X,1,bf7e> over b, a.k.a. the CUSUM statistic.
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Single feature detection - knot of degree one

Similarly, to locate the kink, it is enough to only inspect the absolute
maxima of the new CUSUM-type statistic (which we call CONTRAST),
|(X, gbf’e)] over b, where ¢§’7e is a vector which

is linear for i =s,..., b,

@ is linear for i =b,... e,

@ sums to zero and sums to one when squared.
b o .

o [(7, )| = 0 for any linear vector ~.

15
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(a) 92, (b) L.

Fig. Plots of ¢°, and (17’;,e for s = 1, e = 1000 and several values of b. Solid line: b = 125; dashed line:
b = 500; dotted line: b = 750.
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Single change-point detection: a noiseless example

Contrast
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S
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Single change-point detection: the same example with

noise

Contrast

T T T T T T
o 100 200 300 400 500

S
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Single change-point detection: with a lot more noise

Contrast

T T T T T T
o 100 200 300 400 500

S
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Single kink detection: a noiseless example

Contrast
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From single feature to multiple features?

Question: how to deal with (unknown number of) multiple features?

Idea: make use of the "binary tree” structure of the problem and solve it
via divide-and-conquer.

Suppose we are able to detect a feature at b € {1,---, T}. The problem
can then be divided into two sub-problems:

e find multiple features in {1,--- ,b — 1}.
e find multiple features in {b+1,---, T}.

@ return the locations from the previous two steps together with b.

This approach is particularly popular in the canonical change-point
detection literature; we will show that it could be useful for other more
complicated problems too.
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Change-point detection - overview - |

A substantial number of techniques. A brief (but by no mean comprehensive)
literature review:

@ Least-squares (or generally likelihood-type fit) + AIC or BIC-type
penalty: Yao (1988), Yao and Au (1989), Lee (1995), Lavielle (1999,
2005), Lavielle & Moulines (2000), Lebarbier (2005), Pan & Chen
(2006), Boysen et al. (2009).

@ Minimum Description Length: Davis et al. (2006).
@ L1-type penalties: Rinaldo (2009), Lin et al. (2017).

@ Binary Segmentation: Vostrikova (1981), Venkatraman (1992), Bai
(1997), Chen et al. (2011), Cho & Fryzlewicz (2012, 2013).
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Change-point detection - overview - Il

Some more comments:

@ Least-squares (or generally likelihood-type fit) + AIC or BIC-type penalty:
potentially slow computational speed, typically of order O(T2). However
some serious efforts to reduce this, e.g. Rigail (2010) and Killick et al.
(2012) (a.k.a. PELT, or pruned exact linear time)

@ MDL: minimisation could be quite involved, via a genetic algorithm in Davis
et al. (2006).

@ L1-type penalties: not necessarily optimal for change-point detection, see
Brodsky & Darkhovsky (1993). Often lead to spurious detections.
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Binary Segmentation (BS)

Generic algorithm of BS, using canonical change-point detection as an example:

function BS(s, e, (7)
if e — s <1 then
STOP
else
Pick by € arg MaXpe(s,....e—1} |<X7,¢’s,e>|
if [(X,2.)| > ¢t then
Add by to the index set of estimated features S

BS(s, bo, (1)
BS(by + 1, e, (7)
else
STOP
end if
end if

end function
S=0; BS(1, T, ¢r)
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BS — handle multiple change-points?

In principle, BS is fast (typically O(T log T)), conceptually simple, easy to code,
and tractable theoretically.

Since BS fits a one-step function to the current interval {s, ..., e}, we can expect the
performance to be good if {s,..., e} contains no more than one change-point.

If the current interval {s,..., e} contains more than one change-point, things are still

okay in the canonical setting (Venkatraman, 1992). Consider the noiseless case where
’

f= (fl,...,fT) :

@ even if there are multiple change-points in index from s to e, argmax,|(f, ¢f,e)|
must belong to the set that contains all change-points of f from index s to e.
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BS — handle multiple change-points: a noiseless example

Contrast

T T T T T T
o 100 200 300 400 500

S

Note: we are lucky here, because this property does not hold in general.
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BS fails to detect certain features - a noiseless example

Observation: if the current interval contains two or more features (of
ever-so-slightly more complicated nature), it may happen that the best
approximation by one feature will not indicate any of them:

Best ¢, approximation of the true signal (dashed) via a triangular signal with a single feature.
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BS fails to detect certain features - a noiseless example

Contrast
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o 100 200 300 400 500

S

Y Chen NOT Detection July 2018 20 / 40



Narrowest-over-threshold (NOT)

Aims:
@ we want to deal with intervals with only one feature;
@ the location of the true feature in any choosen interval is sufficiently

far away from the two ending points.

One possible solution:

O randomly pick the starting and ending points of the intervals, s and e,
uniformly with replacement over {1,..., T}, a suitable number of
times (often O(log T) is sufficient); See also Fryzlewicz (2014);

@ only keep the intervals with the value of the summary statistic over
the threshold, e.g. max,<p<ce CONTRAST?, > (1;

@ then concentrate on the one with the narrowest width.
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Narrowest-over-threshold (NOT) - intuitions

Example of global (blue) and local (red) |(X,4>"€)| as a function of b,
on data X in black.
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Narrowest-over-threshold (NOT) - intuitions

@ randomly pick the starting and ending points of the intervals, s and e,

uniformly over {1,..., T} a suitable number of times;
@ keep those intervals with the value of the statistic over the
threshold;

© then concentrate on the one with the narrowest length, e — s.

Intuitions:
@ better mixture of subintervals that represents both local and global
properties;
@ to make sure that the intervals has at least one feature;

© to make sure that the intervals has at most one feature.
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NOT - generic algorithm

Given a data vector X = (Xi,... ,XT)', F'TV’ is a set of M intervals, with start- and end-
points drawn independently and uniformly from {1,..., T}, S = 0.

procedure NOT(s, e, (7)
if e —s <1 then STOP
else
Mse:={m: [sm,em] € F}',[sm, em] C [s, €]}
if Ms. =0 then STOP
else
Ose == {m € Ms.c : maxs,<p<e, CONTRAST? . (X) > (7}
if Os.. = () then STOP
else
m* € argminmco, , |em — Sm|
b* := argmaxs, . <p<e,. CONTRAST? . (X)
S:=8SU{b"}
NOT(s, b*, (1)
NOT(b* +1,e,(7)
end if
end if
end if
end procedure
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NOT - toy example demonstration
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NOT - toy example demonstration
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NOT - toy example demonstration
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Choosing (7 via strengthened SIC

Note that each threshold C(Tk) is associated with a fitted model M.

@ We first perform NOT on all possible thresholds on (0, c0), getting a
series of models M1, M>, ... along the solution path.

@ We then select the k,-th model such that
k. = argmink{ — 2loglik(M) + Dy log® n}

where Dy is the degree of freedom of the corresponding model M,
and a > 1. We call it NOT with sSIC.

NOT solution path can also be viewed as an efficient way of reducing the
number of candidate models.
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General framework that works in many scenarios

(a) (M1) teeth (b) (M2) blocks
(c) (M3) wavel (d) (M4) wave2

(e) (MB) mix (f) (M7) quad
(g) (M6) vol: f; (h) (M6) vol: oy
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Some theory - jumps

Theorem (Consistency and Convergence rates)

Suppose the true jumps are at T, ..., 7, (with the convention of T = 0 and
Tqe1 = T) where q is fixed, and e, "% N(0,02). Let

o7 = minj_1,..q+1(7 = 7j-1), Af = |frp1 — f] and £ = minj_y,_ ¢ Af.
Furthermore, O0r/T > Cy, f+ > C, and maxj=1, 7 |fi| < C for some
£17£23 C > 0.

Let g and 74,...,7, denote, respectively, the number and locations of
change-points, sorted in increasing order, estimated by NOT with sSIC with

o > 1. Then there exist constants C such that given M > 36C; *log(C;'T), as
T — oo,

P(ézq, _max |7 — 7| < ClogT> -1
Jj=1,....q
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Some theory - jumps - more details

About the key assumptions:
@ g is fixed

@ Gaussian noise

@ Spacing between consecutive jumps; "=l "}I(TJ_TJ‘I) >

o Size of the jumps: minj—1 g1 |fr+1 — ] > G

About the convergence rate:
e Optimal rate: Op(1)
o NOT with sSIC: Op(log T)
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Some theory - kinks

Theorem (Consistency and Convergence rates)

Suppose the true kinks are at 11, ..., Tq where q is fixed, and €, oG N(0, o2).
Let 61 = minj=17__.7q+1(7'j = Tj_l), Aj = |2f7-J = f‘rj—l = frj+1 ,
fr=minj_1 4 Ajf-. Furthermore, assume that 6v/T > Cy, f+ T > C, and
max;=1, .7 |fi| < C for some C;,C,, C > 0.

Let G and 71, ...,74 denote, respectively, the number and locations of features,
sorted in increasing order, estimated by sSIC using o > 1. Then there exist
constants C such that given M > 36C1 2 log(C7'T), as T — oo,

IP’<€]:q, _max |7A'J-—7'J-|§C\/T|ogT> — 1.
J=4....9
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Some theory - kinks - more details

About the key assumptions:
@ g is fixed

@ Gaussian noise

o Size of the change in slope: minj—1 g1 [f+1 + frm1 — 26T > G,

About the convergence rate:
o Optimal rate: O,(V/'T)
o NOT with sSIC: Op(v/Tlog T)

Y Chen NOT Detection July 2018 33 /40



Computational complexity - |

Making use of the recurrence relationship of CONTRAST statistics over b, we
could compute

X)X L)
or

(X, 7)o (X peh
at the cost of O(s — e).

o If we take M = O(log T) intervals, we could deal with all of them in
O(Tlog T).

@ Moreover, the cost of constructing the entire solution path (with respect to
all possible thresholds) is at most O(M?3) (much faster in practice).

o At most M different models on the solution path.
@ The binary tree corresponding to each model has at most depth M.
o Construction of the tree at each depth level costs at most O(M).

@ Therefore, the complexity NOT (with the entire solution path) is
O(Tlog T).

Software: R package not
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Computational complexity - Il - the solution path algorithm

To see why the entire solution path can be computed in much faster
manner in practice:

Observations:
Suppose that we have already constructed the binary tree for the model at
threshold ¢{%).

o The next thresold (") on the path (with > ¢!¥) could be
computed by going through all leaves of the previous model tree.

o The new model at ({1 should be typically quite similar to the old
one.
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Computational complexity - Il - toy example

T T T T

0 350 650 1000
s e e stl ammano 0 (V) mao=.CL.(Y)
1 1000 1000 490 10.19
10 245 236 43 0.08
225 450 226 344 0.76
500 750 251 651 0.83
740 950 211 746 0.03
450 550 101 471 0.07

g0 /A,

@ =0 (b) ¢ = 0.03 (©) ¢ =007 (@) ¢ = 0.08
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Computational complexity - IV - empirical evidence

Computational complexity empirically: like O(MT)

@ (S1): jumps in f;
e (S2): kinks in f;
@ (S3): piecewise linear in f;
@ (S4): jumps in both f; and o
100.0 ——%  100.0- - /2;'
10.0 " 10.0- //%/
Lo B ol e
01 ///:/?;//;/;‘///// 0.1- }/%j
102 108 100 . 10° 106 107 102 108 04, 10° 108 107
o(S1) A(S2) =(S3) +(S4) o(S1) A(S2) #(S3) +(S4)
(a) fixed M = 10000 (b) fixed T' = 10000

Fig. Execution times (in seconds)
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Other extension: unknown (global) degree of polynomials

For possible degrees of 0,1,2,..., K,

@ Denote the sSIC scores corresponding to the estimates from
NOTy,...,NOTk by sSIC(NOTY) , ..., sSIC(NOTk) respectively.

@ Pick the estimator produced by NOT;+ with
i* = argmin;c o ksSIC(NOT)).
Model selection consistency can also be proved.

How about allowing the degree of polynomials to change locally...
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extension: an example

o T M i ; AT Lk L
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(a) NOTo, N(0,1) noise (b) NOTy, N(0,2) noise
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(c) NOT1, N(0,1) noise (d) NOT1, N(0,2) noise
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(e) NOTz, N(0,1) noise (f) NOT3, N(0,2) noise
i—q Number of times
Noise | Method | < -3 | =2 | -1 0 12| >3 | MSE | selected by sSIC
NOTq, 0 0 0 0 0|0 | 100 | 0.120 0
N@O1) | NOoT, | 0 | o | o0 |99 |1]|0] 0o |o0015 100
NOT, 0 4 18 78 |00 0 0.024 0
NOT, 0 0 0 0 0] 0| 100 | 0.188 0
N(0,2) NOT, 0 0 0 100 |0 | O 0 0.032 94
NOT; 57 23 | 14 6 0|0 0 0.078 6
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@ NOT solution path can be viewed as a fast device of reducing the
number of potential candidate models to a manageable level, before a
proper model selection step (e.g. via sSIC) is performed.

@ NOT could be applied to a varity of multiple change-point and
change-point-like feature detection problems.

o NOT typically offers near-optimal detection rates with feasible
computational costs.

o Please try our R package not.
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