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Introduction

In the univariate setting, consider the model

Xt = ft + εt , t = 1, . . . ,T ,

where the unobserved function ft contains an unknown number of
features at unknown locations, and εt is centered noise.

Examples:

(canonical) change-point detection (ft being piecewise constant)

knot selection in spline smoothing

trend changes in time series analysis

More broadly, a feature can be anything we know how to estimate the
location of, if we know that there is only one present inside an interval.
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Goals

Objective: estimating the number and locations of these features

Goals:

to consistently estimate the number of the features

to consistently estimate the locations of the features, and ideally at
minimax optimal rates (up to an O(logT ) factor worse)

to be computationally feasible
(i.e. complexity is at most a logarithmic factor worse than O(T ))
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Our aim: a general framework
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Single feature detection

Suppose that we know there exists a single feature inside the interval
[s, e], then detection could be typically accomplished via
(quasi-)log-likelihood-ratio-type statistics, i.e.

1 Find f̄ , a function with only one feature (at different locations from
s + 1 to e − 1), minimising

e∑
t=s

{
Xt − f̄t

}2
.

2 Denote the location of the feature of f̄ by b.

Examples:

piecewise constant

knot of degree 1 (a.k.a. kink)

piecewise linear

......
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Single feature detection - piecewise constant

Denote by f̄b a step vector with a change-point at index b. We have that

argmins<b<e min
f̄b

e∑
t=s

{
Xt − f̄bt

}2 ≡ argmaxb|〈X,ψb
s,e〉|

where X = (X1, . . . ,Xn)′ and ψb
s,e is an ”Unbalanced Haar” vector, i.e. a

vector which

is constant and positive for i = s, . . . , b,

is constant and negative for i = b + 1, . . . , e,

sums to zero and sums to one when squared.

Thus, to locate the change-point, it is enough to only inspect the absolute
maxima of 〈X,ψb

s,e〉 over b, a.k.a. the CUSUM statistic.
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Single feature detection - knot of degree one

Similarly, to locate the kink, it is enough to only inspect the absolute
maxima of the new CUSUM-type statistic (which we call CONTRAST),
|〈X,φb

s,e〉| over b, where φb
s,e is a vector which

is linear for i = s, . . . , b,

is linear for i = b, . . . , e,

sums to zero and sums to one when squared.

|〈γ,φb
s,e〉| = 0 for any linear vector γ.
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Single change-point detection: a noiseless example
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Single change-point detection: the same example with
noise
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Single change-point detection: with a lot more noise
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Single kink detection: a noiseless example
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From single feature to multiple features?

Question: how to deal with (unknown number of) multiple features?

Idea: make use of the ”binary tree” structure of the problem and solve it
via divide-and-conquer.

Suppose we are able to detect a feature at b ∈ {1, · · · ,T}. The problem
can then be divided into two sub-problems:

find multiple features in {1, · · · , b − 1}.
find multiple features in {b + 1, · · · ,T}.
return the locations from the previous two steps together with b.

This approach is particularly popular in the canonical change-point
detection literature; we will show that it could be useful for other more
complicated problems too.
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Change-point detection - overview - I

A substantial number of techniques. A brief (but by no mean comprehensive)
literature review:

Least-squares (or generally likelihood-type fit) + AIC or BIC-type
penalty: Yao (1988), Yao and Au (1989), Lee (1995), Lavielle (1999,
2005), Lavielle & Moulines (2000), Lebarbier (2005), Pan & Chen
(2006), Boysen et al. (2009).

Minimum Description Length: Davis et al. (2006).

L1-type penalties: Rinaldo (2009), Lin et al. (2017).

Binary Segmentation: Vostrikova (1981), Venkatraman (1992), Bai
(1997), Chen et al. (2011), Cho & Fryzlewicz (2012, 2013).
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Change-point detection - overview - II

Some more comments:

Least-squares (or generally likelihood-type fit) + AIC or BIC-type penalty:
potentially slow computational speed, typically of order O(T 2). However
some serious efforts to reduce this, e.g. Rigail (2010) and Killick et al.
(2012) (a.k.a. PELT, or pruned exact linear time)

MDL: minimisation could be quite involved, via a genetic algorithm in Davis
et al. (2006).

L1-type penalties: not necessarily optimal for change-point detection, see
Brodsky & Darkhovsky (1993). Often lead to spurious detections.
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Binary Segmentation (BS)

Generic algorithm of BS, using canonical change-point detection as an example:

function BS(s, e, ζT )
if e − s ≤ 1 then

STOP
else

Pick b0 ∈ arg maxb∈{s,...,e−1} |〈X,ψb
s,e〉|

if |〈X,ψb0
s,e〉| > ζT then

Add b0 to the index set of estimated features S
BS(s, b0, ζT )
BS(b0 + 1, e, ζT )

else
STOP

end if
end if

end function
S = ∅; BS(1, T , ζT )
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BS – handle multiple change-points?

In principle, BS is fast (typically O(T logT )), conceptually simple, easy to code,
and tractable theoretically.

Since BS fits a one-step function to the current interval {s, . . . , e}, we can expect the
performance to be good if {s, . . . , e} contains no more than one change-point.

If the current interval {s, . . . , e} contains more than one change-point, things are still
okay in the canonical setting (Venkatraman, 1992). Consider the noiseless case where
f =

(
f1, . . . , fT

)′
:

even if there are multiple change-points in index from s to e, argmaxb|〈f,ψb
s,e〉|

must belong to the set that contains all change-points of f from index s to e.
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BS – handle multiple change-points: a noiseless example

Note: we are lucky here, because this property does not hold in general.
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BS fails to detect certain features - a noiseless example

Observation: if the current interval contains two or more features (of
ever-so-slightly more complicated nature), it may happen that the best
approximation by one feature will not indicate any of them:

Best `2 approximation of the true signal (dashed) via a triangular signal with a single feature.
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BS fails to detect certain features - a noiseless example
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Narrowest-over-threshold (NOT)

Aims:

we want to deal with intervals with only one feature;

the location of the true feature in any choosen interval is sufficiently
far away from the two ending points.

One possible solution:

1 randomly pick the starting and ending points of the intervals, s and e,
uniformly with replacement over {1, . . . ,T}, a suitable number of
times (often O(logT ) is sufficient); See also Fryzlewicz (2014);

2 only keep the intervals with the value of the summary statistic over
the threshold, e.g. maxs<b<e CONTRASTb

s,e > ζT ;

3 then concentrate on the one with the narrowest width.
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Narrowest-over-threshold (NOT) - intuitions

Example of global (blue) and local (red) |〈X,ψs,b,e〉| as a function of b,
on data X in black.
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Narrowest-over-threshold (NOT) - intuitions

1 randomly pick the starting and ending points of the intervals, s and e,
uniformly over {1, . . . ,T} a suitable number of times;

2 keep those intervals with the value of the statistic over the
threshold;

3 then concentrate on the one with the narrowest length, e − s.

Intuitions:

1 better mixture of subintervals that represents both local and global
properties;

2 to make sure that the intervals has at least one feature;

3 to make sure that the intervals has at most one feature.
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NOT - generic algorithm

Given a data vector X = (X1, . . . ,XT )′, FM
T is a set of M intervals, with start- and end-

points drawn independently and uniformly from {1, . . . ,T}, S = ∅.

procedure NOT(s, e, ζT )
if e − s < 1 then STOP
else
Ms,e :=

{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

if Ms,e = ∅ then STOP
else
Os,e :=

{
m ∈Ms,e : maxsm≤b≤em CONTRASTb

sm,em (X) > ζT
}

if Os,e = ∅ then STOP
else

m∗ :∈ arg minm∈Os,e |em − sm|
b∗ := arg maxsm∗≤b≤em∗ CONTRASTb

sm∗ ,em∗ (X)
S := S ∪ {b∗}
NOT(s, b∗, ζT )
NOT(b∗ + 1, e, ζT )

end if
end if

end if
end procedure
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NOT – toy example demonstration
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NOT – toy example demonstration
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NOT – toy example demonstration
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Choosing ζT via strengthened SIC

Note that each threshold ζ
(k)
T is associated with a fitted model Mk .

1 We first perform NOT on all possible thresholds on (0,∞), getting a
series of models M1,M2, . . . along the solution path.

2 We then select the k∗-th model such that

k∗ = argmink

{
− 2loglik(Mk) + Dk logα n

}
where Dk is the degree of freedom of the corresponding model Mk ,
and α > 1. We call it NOT with sSIC.

NOT solution path can also be viewed as an efficient way of reducing the
number of candidate models.
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General framework that works in many scenarios
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Some theory - jumps

Theorem (Consistency and Convergence rates)

Suppose the true jumps are at τ1, . . . , τq (with the convention of τ = 0 and

τq+1 = T) where q is fixed, and εt
i.i.d.∼ N(0, σ2). Let

δT = minj=1,...,q+1(τj − τj−1), ∆f
j = |fτj+1 − fτj | and f T = minj=1,...,q ∆f

j .

Furthermore, δT/T ≥ C 1, f T ≥ C 2 and maxi=1,...,T |fi | ≤ C̄ for some
C 1,C 2, C̄ > 0.

Let q̂ and τ̂1, . . . , τ̂q denote, respectively, the number and locations of
change-points, sorted in increasing order, estimated by NOT with sSIC with
α > 1. Then there exist constants C such that given M ≥ 36C−2

1 log(C−1
1 T ), as

T →∞,

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C logT

)
→ 1.
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Some theory - jumps - more details

About the key assumptions:

q is fixed

Gaussian noise

Spacing between consecutive jumps:
minj=1,...,q+1(τj−τj−1)

T ≥ C 1

Size of the jumps: minj=1,...,q+1 |fτj+1 − fτj | ≥ C 2

About the convergence rate:

Optimal rate: Op(1)

NOT with sSIC: Op(logT )
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Some theory - kinks

Theorem (Consistency and Convergence rates)

Suppose the true kinks are at τ1, . . . , τq where q is fixed, and εt
i.i.d.∼ N(0, σ2).

Let δT = minj=1,...,q+1(τj − τj−1), ∆f
j = |2fτj − fτj−1 − fτj+1|,

f T = minj=1,...,q ∆f
j . Furthermore, assume that δT/T ≥ C 1, f TT ≥ C 2 and

maxi=1,...,T |fi | ≤ C̄ for some C 1,C 2, C̄ > 0.

Let q̂ and τ̂1, . . . , τ̂q denote, respectively, the number and locations of features,
sorted in increasing order, estimated by sSIC using α > 1. Then there exist
constants C such that given M ≥ 36C−2

1 log(C−1
1 T ), as T →∞,

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C

√
T logT

)
→ 1.
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Some theory - kinks - more details

About the key assumptions:

q is fixed

Gaussian noise

Spacing between consecutive kinks:
minj=1,...,q+1(τj−τj−1)

T ≥ C 1

Size of the change in slope: minj=1,...,q+1 |fτj+1 + fτj−1 − 2fτj |T ≥ C 2

About the convergence rate:

Optimal rate: Op(
√
T )

NOT with sSIC: Op(
√
T logT )
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Computational complexity - I

Making use of the recurrence relationship of CONTRAST statistics over b, we
could compute

〈X,ψs+1
s,e 〉, . . . , 〈X,ψ

e−1
s,e 〉

or
〈X,φs+1

s,e 〉, . . . , 〈X,φ
e−1
s,e 〉

at the cost of O(s − e).

If we take M = O(logT ) intervals, we could deal with all of them in
O(T logT ).

Moreover, the cost of constructing the entire solution path (with respect to
all possible thresholds) is at most O(M3) (much faster in practice).

At most M different models on the solution path.
The binary tree corresponding to each model has at most depth M.
Construction of the tree at each depth level costs at most O(M).

Therefore, the complexity NOT (with the entire solution path) is
O(T logT ).

Software: R package not
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Computational complexity - II - the solution path algorithm

To see why the entire solution path can be computed in much faster
manner in practice:

Observations:
Suppose that we have already constructed the binary tree for the model at

threshold ζ
(k)
T .

The next thresold ζ
(k+1)
T on the path (with > ζ

(k)
T ) could be

computed by going through all leaves of the previous model tree.

The new model at ζ
(k+1)
T should be typically quite similar to the old

one.

Y Chen NOT Detection July 2018 35 / 40



Computational complexity - III - toy example
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Computational complexity - IV - empirical evidence

Computational complexity empirically: like O(MT )

(S1): jumps in ft

(S2): kinks in ft

(S3): piecewise linear in ft

(S4): jumps in both ft and σt
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Other extension: unknown (global) degree of polynomials

For possible degrees of 0, 1, 2, . . . ,K ,

1 Denote the sSIC scores corresponding to the estimates from
NOT0, . . . ,NOTK by sSIC(NOT0) , ..., sSIC(NOTK ) respectively.

2 Pick the estimator produced by NOTi∗ with

i∗ = argmini∈{0,...,K}sSIC(NOTi ).

Model selection consistency can also be proved.

How about allowing the degree of polynomials to change locally...
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Other extension: an example
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Summary

NOT solution path can be viewed as a fast device of reducing the
number of potential candidate models to a manageable level, before a
proper model selection step (e.g. via sSIC) is performed.

NOT could be applied to a varity of multiple change-point and
change-point-like feature detection problems.

NOT typically offers near-optimal detection rates with feasible
computational costs.

Please try our R package not.
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